Store-n-Learn: Classification and Clustering with Hyperdimensional Computing across Flash Hierarchy
نویسندگان
چکیده
Processing large amounts of data, especially in learning algorithms, poses a challenge for current embedded computing systems. Hyperdimensional (HD) (HDC) is brain-inspired paradigm that works with high-dimensional vectors called hypervectors . HDC replaces several complex computations bitwise and simpler arithmetic operations at the expense an increased amount data due to mapping into space. These hypervectors, more often than not, cannot be stored memory, resulting long transfers from storage. In this article, we propose Store-n-Learn, in-storage solution performs classification clustering by implementing encoding, training, retraining, inference across flash hierarchy. To hide latency training enable efficient computation, introduce concept batching HDC. We also present on-chip acceleration encoding planes. This enables us exploit high parallelism provided hierarchy encode multiple points parallel both batched non-batched fashion. Store-n-Learn implements single top-level FPGA accelerator novel implementations inference, on encoded data. Our evaluation over 10 popular datasets shows average 222× (543×) faster CPU 10.6× (7.3×) state-of-the-art solution, INSIDER (clustering).
منابع مشابه
Sequence Prediction with Hyperdimensional Computing
Hyperdimensional Computing is an emergent model of computation where all objects are represented in high-dimensional vectors. This model includes a well-defined set of arithmetic operations that produce new highdimensional vectors, which, in addition to represent basic entities, can also represent more complex data structures such as sets, relations and sequences. This paper presents a method f...
متن کاملInteger Echo State Networks: Hyperdimensional Reservoir Computing
We propose an integer approximation of Echo State Networks (ESN) based on the mathematics of hyperdimensional computing. The reservoir of the proposed Integer Echo State Network (intESN) contains only n-bits integers and replaces the recurrent matrix multiply with an efficient cyclic shift operation. Such an architecture results in dramatic improvements in memory footprint and computational eff...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Privacy preserving in ubiquitous computing: Classification & hierarchy
In this paper, we adopt the classification of personal information and hierarchy of services to build a privacy system, in which one communicates with each other via pipes with different security levels. In each level, one has the corresponding rights to access each other. The requesters are not able to be infringed based on the personal information that service obtains from service providers. ...
متن کاملSymbolic Computation Using Cellular Automata-Based Hyperdimensional Computing
This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic computation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions in Embedded Computing Systems
سال: 2022
ISSN: ['1539-9087', '1558-3465']
DOI: https://doi.org/10.1145/3503541